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Hamilton–Jacobi Quantization of Systems
With Time-Dependent Constraints

Dumitru Baleanu1,2 and Yurdahan Güler1,3
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Hamilton–Jacobi formalism is used to investigate time-dependent constraint systems.
It is proved that the generalization of Dirac’s canonical quantization method in the non-
stationary case can be obtained naturally in Hamilton–Jacobi formalism. The example
of the relativistic particle in a plane wave is analyzed in detail.
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1. INTRODUCTION

The direct way to quantize a system with constraints is to use canonical
quantization based on the Hamiltonian formalism of the classical theory (Dirac,
1964; Hansonet al., 1976; Henneaux, 1985; Henneaux and Teiteilbom, 1992;
Sundermeyer, 1982).

A new quantization method for constrained systems was initiated by one of
us (Güler, 1987, 1989, 1992) and the method was generalized to singular systems
with higher order Lagrangians as well as to systems containing elements of the
Berezin algebra (Pimentel and Teixeira, 1998; Pimentelet al., 1996, 1998).

The advantage of the Hamilton–Jacobi formalism is that we have no difference
between first and second class constraints and no gauge fixing term is necessary
because the gauge variables are separated in the process of constructing an inte-
grable system of total differential equations. In addition the action provided by
the formalism can be used in the process of the path integral quantization method
(Baleanu and G¨uler, 2001a,b,c). In this formalism the phase space is enlarged from
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the beginning (G¨uler, 1987, 1989, 1992) and the integrability conditions are the
same as Dirac’s consistency conditions (Pimentelet al., 1998).

Recently the time-dependent Schr¨odinger equation for systems invariant un-
der the reparametrization of time was debated in Tkachet al. (1999); its BRST
treatment was obtained (Marnelius and Sandstrom, 2000) and the reparametriza-
tion invariance was treated as a gauge symmetry (F¨ulöpet al., 1999).

The quantization of a relativistic particle in a plane wave was analyzed in
Gavrilov and Gitman (1993) as well as the gauge invariance for generally covariant
systems was investigated in Henneauxet al. (1992). The connection between
the canonical and the path integral formulations of the quantum mechanics of a
relativistic particle was developed (Hartle and Kuchar, 1986).

On the other hand an intriguing problem is to apply the Hamilton–Jacobi
formalism when the Hamiltonians are not linearly independent and to compare the
obtained results with those provided by other methods.

The main aim of this paper is to investigate the quantization of systems with
time-dependent constraints by using Hamilton–Jacobi formulation.

The organization of the paper is as follows: In Section 2 the Hamilton–
Jacobi formulation and its connection with Dirac’s modification method of time-
dependent second class constraints are presented. In Section 3 the reparametriza-
tion invariance theories are analyzed by using Hamilton–Jacobi formalism. Our
conclusions are presented in Section 4.

2. HAMILTON–JACOBI FORMALISM

In this formulation we start with a singular lagrangian of Hessian matrix of
rankn-r . The formalism leads us to the following Hamiltonians (G¨uler, 1992):

H ′α = Hα(tβ , qa, pa)+ pα, (1)

whereα, β = n− r + 1, . . . , n anda = 1, . . . , n− r . The usual HamiltonianH0

is defined as

H0 = −L(t, qi , q̇ν , q̇a = wa)+ pawa

+ q̇µpµ |pν=−Hν
, ν = 0, n− r + 1, . . . , n, (2)

which is independent oḟqµ. Hereq̇a = dqa

dτ , whereτ is a parameter. The equations
of motion are obtained as total differential equations in many variables as follows:

dqa = ∂H ′α
∂pa

dtα, dpa = −∂H ′α
∂qa

dtα,

dpµ = −∂H ′α
∂tµ

dtα, µ = 1, . . . , r, (3)
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dz=
(
−Hα + pa

∂H ′α
∂pa

)
dtα, (4)

wherez= S(tα, qa).
One should notice that although we have started withn generalized coordi-

natesqi and generalized velocitieṡqi to pass to canonical formulation we have to
treat some generalized momenta-dependent and corresponding generalized coor-
dinates as free parameters. Thus, we have a phase space of lower dimension. But
this is not sufficient because the equations of motion are total differential equations
and we have integrability conditions. In other words Eqs. (3) and (4) are integrable
iff d H′α = 0. Some of these conditions could be satisfied identically and the rest
may cause new constraints. Again using the same test, the additional constraints
might arise. As a result, it may happen that we have a set of constraints, which are
in involution, and an integrable system. Every new constraint leads us to reduce
the dimension of the phase space. Thus, we may have constraints other than (1)
and (2). The essence of the theory is to express constraints in the form (1) and (2).

2.1. Integrability Conditions

Let us define the linear operatorsXα as (Güler, 1992)

Xα f = [ f, H ′α] = ∂ f

∂qβ

∂H ′α
∂pβ
− ∂ f

∂pβ
∂H ′α
∂qβ
+ ∂ f

∂χα
. (5)

Lemma. A system of differential equations(3) is integrable iff

[H ′α, H ′β ] = 0. (6)

Proof: If we suppose that (6) is satisfied, then we have

(Xα, Xβ) f = (XαXβ f − XβXα) f = Xα[ f, H ′β ] − Xβ [ f, H ′α]. (7)

Making use of Jacobi’s identity we obtain

(Xα, Xβ) f = [ f, [H ′β , H ′α]] . (8)

Using (6) and (8) we find

(Xα, Xβ) = 0. (9)

Conversely, if the system is complete, then (8) is fulfilled for anyα andβ and we
obtain

[H ′α, H ′β ] = 0. (10)

¤
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In the concrete applications it may happen thatH ′α are not in involution, for
example, when the second class constraints appear (Dominichiet al., 1984; Rabei
and Güler, 1992). In this case the associated total differential system of equations
is not integrable and the modification of the phase space is required (Baleanu and
Güler, 2000; Rabei and G¨uler, 1992). If we try to apply the canonical quantization
method we find easily the Dirac’s brackets action on the extended phase space
(Baleanu and G¨uler 2000).

2.2. Modified Dirac’s Method of Time-Dependent Second Class
Constraints Theories

In the following we assume that we have a constrained system having
8(η, t) = 0 second class constraints, whereη = (q, p), and it can explicitly depend
on timet . In order to keep the equations of motion in the usual form in Gavrilov
and Gitman (1993) a momentaε conjugate tot was introduced. In this manner the
Poisson brackets are considered in the extended phase space (q, p, t, ε) = (η, t, ε)
as follows:

η̇ = {η, H + ε}D(8), 8(η, t) = 0, (11)

whereH represents the Hamiltonian of the system and the braces denote the Dirac’s
bracket corresponding to the set of contraints8 (for more details see Gavrilov and
Gitman, 1993, and the references therein).

In the Hamilton–Jacobi formulation the HamiltonianH ′0 = p0+ Hc is in the
form similar toH + ε Thus, we conclude that the generalization of Dirac’s quan-
tization (Gavrilov and Gitman, 1993; Gitman and Tyutin, 1990) method emerges
naturally in Hamilton–Jacobi formalism.

3. THE REPARAMETRIZATION INVARIANCE

The reparametrization invariant action corresponding to a spinless particle in
an electromagnetic field of a plane wave oriented along thex axis is (Gavrilov and
Gitman, 1993)

S= −
∫

m
√

ẋ2+ eẋ A dτ = −
∫ [

m
√

2ẋ− ẋ+ − (ẋ⊥)2+ eẋa Aa(x−)
]

dτ (12)

HereAµ = (0, Aa, 0), x± = (x0± x3)/
√

2, x⊥ = (xa), a = 1, 2.

π± = ∂L

∂x±
= − mẋ±√

2ẋ− ẋ+ − (ẋ⊥)2
(13)

πa = ∂L

∂ ẋa
= − mẋa√

2ẋ− ẋ+ − (ẋ⊥)2
− eAa(x−) (14)
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We mention that (13) are not suitable for application of Hamilton–Jacobi
formalism simply because the velocities appear. Since the rank of the Hessian
matrix is 3 we conclude that not all the momenta are independent. On the other
hand we can easily verify that sgṅx− = −sgnπ̇+ = ζ and we have a primary
constraint (Gavrilov and Gitman, 1993).

H ′1 = π− −
[πa + eAa(x−)]2+m2

2π+
= 0, π± 6= 0. (15)

The canonical Hamiltonian becomes

Hc = 2λζH ′1, λ = |ẋ−|. (16)

In Hamilton–Jacobi formalism we have at this stage two Hamiltonians

H ′0 = p0+ Hc, H ′1 = π− −
[πa + eAa(x−)]2+m2

2π+
= 0, π± 6= 0, (17)

But they are not linearly independent. In other words the theory is degenerate.
On the other handx− andτ look like gauge variables.

Let us now check the integrability conditions. If the variations ofH ′1 are zero,
then automatically the variations ofH ′0 are zero.

Fromd H′1 = 0 we obtain

dπ− = −eẋa A′a dτ (18)

and it is one of the Euler–Lagrange equations.
Now the system of total differential equations is integrable and the remaining

total differential equations are

dx− = 2λζ dτ, dπ+ = 0, dπa = 0. (19)

Integratingdx− = λζ dτ, we getx− − 2λζτ = c, wherec is a real constant.
Taking into account thatdλ = 0 andλ = 1

2, we reobtain the same gauge
condition from Gavrilov and Gitman (1993). In other wordsx− and τ are not
linearly independent. Then the correspondingSchr̈odingerequation becomes

i
∂9

∂x−
= −

[− i ∂
∂xa − eAa(x−)

]2+m2

2π+
9. (20)

4. CONCLUSIONS

Despite many attempts to developed the Hamilton–Jacobi formalism it con-
tains unexplored parts, e.g., the case when the constraints are linearly dependent,
they are not in the form (1) or they are second class. The main problem is whether
the results provided by Hamilton–Jacobi and Dirac’s are in agreement with each
other. Since the phase space is extended from the beginning in Hamilton–Jacobi
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formalism and in addition the integrability conditions are the same as Dirac’s con-
sistency conditions, we conclude that both formalism leads us to the same canonical
quantization procedure. Hamilton–Jacobi formalism can be applied without diffi-
culty when the constraints are dependent on time; the main problem is to keep its
physical significance, more exactly all the constraints must be in the form (1).

The reparametrization invariance theory is problematic for Hamilton–Jacobi
formalism because we have two Hamiltonians and they are not independent. Using
the integrability conditions we reobtained the gauge condition imposed in Gavrilov
and Gitman (1993) as one of the total differential equations. Once we found that
p0 andx− are related the Schr¨odinger’s equation was obtained.
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